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Abstract 

Forest Health Monitoring (FHM) is essential for assessing and 

maintaining the health of forest ecosystems, especially in the context of 

climate change. While traditional in situ surveys are limited by 

subjectivity, logistical complexity, and high costs, remote sensing (RS) 

offers a more efficient alternative. Among RS technologies, Unmanned 

Aerial Vehicles (UAVs) equipped with multispectral cameras have proven 

particularly effective. These drones provide high-resolution, cost-

effective, and flexible monitoring solutions, capturing detailed data 

across various wavelengths. This enables precise identification of 

vegetation stress and damage, facilitating timely and targeted 

interventions. As demonstrated by the GO-SURF project, UAVs with 

multispectral sensors are becoming indispensable tools for sustainable 

forest management. 
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1. Introduction 

Forest Health Monitoring (FHM) is a process aimed at assessing the 

health status of forest ecosystems (Trumbore et al. 2015). This 

monitoring involves observing and recording various indicators, such as 

the degree of defoliation, the presence of diseases or pests, and other 

signs of stress. The main goal of FHM is to promptly detect any changes 

in forest health in order to take measures to mitigate damage and 

preserve the health of forest ecosystems (Ecke et al. 2022). 

Establishing FHM systems is particularly relevant in the context of 

climate change, where vegetation increasingly experiences stress 

effects with a loss of photosynthetic activity (Puletti et al. 2019), and 

where extreme events such as fires and insect infestations (Kautz et al. 

2024) and other pathogens are becoming more impactful. Therefore, it 

has become increasingly important and essential for every forest 

manager, both public and private, to establish FHM monitoring systems 

to mitigate potential problems in the forest stands and to intervene 

promptly. 

In the Italian and European context, in situ forest health monitoring has 

been carried out for several decades at local, regional, and global levels, 

using standard indicators based on field surveys conducted by trained 

personnel who, for example, identify the degree of crown defoliation 

(Canullo et al. 2012). These monitoring networks provide a standardized 

framework for assessing forest health, though at a limited number of 

points, allowing for national-scale monitoring, but not aligning with the 

needs of forest managers. Public and private forest managers 

increasingly face the impact of forest disturbances on their stands and, 

as previously mentioned, it is crucial to implement FHM monitoring 

systems that promptly identify potential problems, enabling timely 

mitigation interventions. 

However, classic in situ surveys conducted by operators present a high 

degree of uncertainty because the quality depends on the experience 

and subjective perception of the observers. Therefore, specific training 

courses are necessary to carry out surveys in a standardized and optimal 



manner. Moreover, in situ surveys are logistically complex and costly in 

terms of time and labor, making them feasible only at the plot or single 

parcel scale. For this reason, remote sensing (RS) has established itself 

as part of FHM, allowing the acquisition of forest health indicators in an 

objective, quantitative, and repetitive manner at various spatial scales 

(Lambert et al. 2013; Ecke et al. 2024). 

In this context, satellite-based remote sensing still dominates research 

and applicability in the FHM sector. Indeed, publicly accessible 

multispectral image data such as Landsat, MODIS, and Sentinel-2, allow 

for monitoring systems over large areas, thanks to the temporal and 

spatial resolution that is often sufficient to identify disturbances 

(Francini and Chirici 2022). However, as highlighted by some research, 

satellites can present difficulties in monitoring, for example due to 

cloud cover (Giannetti et al. 2021) that can obscure portions of the 

forest, making it challenging in some contexts, such as the mountainous 

areas of the Alps and the Apennines, to establish early warning systems. 

These issues, for instance, are incompatible when biotic or abiotic 

factors cause rapid changes in forests. To overcome these problems, 

manned aircraft can meet these requirements because they can fly 

below the cloud cover (Ecke et al. 2024). However, in practice, due to 

high costs and logistical limitations, they are used only annually or 

biennially over large areas. This makes them, in fact, not suitable for 

early identification of stress (Ecke et al. 2024). 

It is in this context that UAVs have found increasing use, not as 

competitors but as a complementary technology to traditional Earth 

observation platforms (Ecke et al. 2024). In the context of the Go-SURF 

Operational Group, drones equipped with multispectral cameras have 

been used to map stress in forest stands. UAVs, compared to satellites 

and aircraft, cover smaller areas but are unbeatable in spatial resolution, 

which can reach a Ground Sampling Distance on the order of 

centimeters. They are also very efficient in terms of costs, flexibility, and 

especially revisit times, which can be frequent as they depend only on 

the operator. 



The area that can be covered with these UAV ranges from one hectare 

to several square kilometers in a single flight. The coverage is mainly 

influenced by the type of UAV, propulsion technology, camera type, 

terrain type, and area accessibility. Also, UAV operation regulations 

must be considered as a limiting factor for coverage. However, the new 

European regulation allows flying at an altitude of 120 meters above 

ground level with a buffer distance of 500 meters, which allows even the 

most performant drones to comfortably cover 10-20 hectares in a single 

flight. 

However, besides the drone, what makes the difference in establishing 

an FHM system is the sensor the drone can carry onboard. Recently, 

numerous new multispectral cameras have become available on the 

market. These cameras, thanks to their ability to capture different 

wavelengths of the electromagnetic spectrum, can be used to map 

various types of forest stress (Barzagli et al. 2018; Zhang et al. 2019; 

Ecke et al. 2022). 

Nevertheless, the variety of cameras available on the market and the 

various vegetation indices that can be derived from them make it 

difficult to navigate a constantly evolving research and technical 

advancement landscape. For this reason, this article aims to provide an 

overview of vegetation indices useful for mapping forest stress, an 

overview of some of the cameras available on the market, and the most 

straightforward or promising processing techniques, based on the 

results of the EIP-AGRI GO-SURF and also considering international 

literature, to offer useful information to technicians involved in forest 

monitoring. 

2. Multispectral Cameras and Vegetation Indices 

Multispectral cameras are advanced imaging devices that capture visual 

information across different bands of the electromagnetic spectrum. 

These bands can include the visible spectrum (red, green, blue) and the 

near-infrared (NIR), and in some cases, the red-edge near-infrared. By 

using these various wavelengths, multispectral cameras provide 

detailed data that can be used to analyze various aspects of vegetation, 



soil, and forests. Specifically, thanks to the ability to acquire information 

in the infrared spectrum, it is possible to investigate the photosynthetic 

activity of plants, assess tree health, and highlight the presence of 

diseases or other types of stress. Like RGB cameras, they can be used for 

photogrammetric acquisitions that allow the derivation of not only 2D 

data (multispectral orthomosaic) but also 3D data such as point clouds 

and digital surface models (DSM) useful for analyzing forest structure 

(Barzagli et al. 2018; Giannetti et al. 2020). 

However, their main advantage, as previously mentioned, is their ability 

to capture images in different wavelengths of the electromagnetic 

spectrum, allowing operators to distinguish variations in chlorophyll 

content in vegetation that can promptly indicate the presence of stress, 

diseases, or pathogens. Indeed, thanks to the ability to acquire 

information at different wavelengths, they can be easily used to derive 

various vegetation indices through simple mathematical operations 

between the images of different bands, also using common GIS 

applications like QField through the raster calculator functions. 

Among the vegetation indices that can be calculated, we report those in 

Table 1, which are the most promising for monitoring stress in forest 

environments and can be calculated with currently available 

multispectral cameras. 

 

Table 1. Vegetation Indices Useful for Forest Monitoring That Can Be 
Calculated with Multispectral Cameras 

Vegetation Index Formula 
NDVI (Normalized 
Difference Vegetation 
Index) 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

NDRE (Normalized 
Difference Red Edge) 

 𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅−𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑁𝐼𝑅+𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 

GNDVI (Green Normalized 
Difference Vegetation 
Index) 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛
 

LCI (Leaf Chlorophyll Index) 𝐿𝐶𝐼 =
𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝑅𝑒𝑑

𝑅𝑒𝑑𝐸𝑑𝑔𝑒+𝑅𝑒𝑑
 



SAVI (Soil-Adjusted 
Vegetation Index) 

𝑆𝐴𝑉𝐼 =
(1+𝐿)(𝑁𝐼𝑅−𝑅𝑒𝑑)

𝑁𝐼𝑅+𝑅𝑒𝑑+𝐿
 

where L is a constant depending from the 
soil conditions (tipically  𝐿= 0.5) 

OSAVI (Optimized Soil-
Adjusted Vegetation Index) 

𝑂𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

𝑁𝐼𝑅+𝑅𝑒𝑑+0.16
 

 
MCARI (Modified 
Chlorophyll Absorption 
Ratio Index) 

𝑀𝐶𝐴𝑅𝐼 =
(𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝑅𝑒𝑑)−0.2𝑥(𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝐺𝑟𝑒𝑒𝑛)

𝑅𝑒𝑑𝐸𝑑𝑔𝑒+𝑅𝑒𝑑
 

 

CIRE (Chlorophyll Index Red 
Edge) 
EVI (Enhanced Vegetation 
Index) 

𝐶𝐼𝑅𝐸 =
𝑁𝐼𝑅

𝑅𝑒𝑑𝐸𝑑𝑔𝑒
− 1 

 

EVI (Enhanced Vegetation 
Index) 

𝐸𝑉𝐼 = 2.5 𝑥
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+6𝑥𝑅𝑒𝑑−7.5𝑥𝐵𝑙𝑢+1
 

 
VARI (Visible 
Atmospherically Resistant 
Index) 

𝑉𝐴𝑅𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛+ 𝑅𝑒𝑑−𝐵𝑙𝑢𝑒
 

 

 

The NDVI (Normalized Difference Vegetation Index) is perhaps the most 

widely used index for monitoring plant health. However, its tendency to 

saturate can sometimes hinder the early detection of stress in forests. 

The index is based on the fact that chlorophyll in living plants strongly 

reflects near-infrared (NIR) light and absorbs red light. High NDVI values, 

close to 1, indicate dense and healthy vegetation, while lower values 

below 0.7 suggest stress, and values below 0.6 indicate plant death. 

However, according to the experience of the GO-SURF project and the 

literature review in the context of poplar cultivation (Chianucci et al. 

2021), NDVI may be the least accurate index for detecting stress.  

For instance, the GNDVI (Green Normalized Difference Vegetation 

Index) is more sensitive for early warning of stress. This index is similar 

to NDVI but uses the green band instead of the red band for 

normalization with the NIR band. This makes it useful for monitoring 

plants with high leaf density or identifying water stress, allowing for 

early warnings (Raddi et al. 2021). For assessing chlorophyll content, the 

LCI (Leaf Chlorophyll Index) is very sensitive to the chlorophyll present 



in leaves (Gallardo-Salazar et al. 2023). Chlorophyll absorbs red light and 

reflects red-edge light, making this index useful for directly estimating 

chlorophyll content, which is an indicator of the plant's photosynthetic 

capacity. Similarly, the CIRE (Chlorophyll Index Red Edge) is even more 

correlated with the nutritional status of plants (Kleinsmann et al. 2023). 

The NDRE (Normalized Difference Red Edge) is particularly useful for 

identifying plant stress in canopy sections. The Red Edge is very 

sensitive to changes in leaf structure and chlorophyll content, allowing 

for the detection of small variations (Minařík and Langhammer 2016). It 

is useful for identifying plants that may be affected by diseases or 

nutritional deficiencies before these issues are visible to the naked eye. 

The MCARI (Modified Chlorophyll Absorption Ratio Index) is designed to 

be less sensitive to soil variations, enhancing the ability to detect plant 

stress in heterogeneous environments with exposed soil (Zou et al. 

2019). For evaluating photosynthetic activity and vegetative vigor, the 

EVI (Enhanced Vegetation Index) improves sensitivity in high-density 

vegetation areas and reduces atmospheric and soil interferences 

compared to NDVI. The VARI (Visible Atmospherically Resistant Index) 

can be used to monitor vegetation using only the visible bands, making 

it useful in conditions where NIR bands are unavailable, such as with RGB 

cameras. 

3. Drones and Multispectral Cameras on the Market 

Among drones with an integrated multispectral sensor, the DJI Mavic 

3M combines a 20 MP RGB camera and four 5 MP multispectral cameras 

that capture in the green (560nm±16nm), red (650nm±16nm), red-edge 

(730±16nm), and NIR (860nm±26nm) bands, along with an integrated 

light sensor. This setup captures solar irradiance, allowing for post-

processing compensation for any light fluctuations in the images. The 

manufacturer claims a flight autonomy of 43 minutes with a coverage 

per flight of 2 km². The drone is also available with an RTK module, 

providing precise georeferencing of the survey with high accuracy. 

 



Another DJI drone with an integrated sensor is the P4 Multispectral, 

equipped with six different cameras of 2.08 MP—one RGB camera and 

five multispectral cameras capturing in the blue (450±16nm), green 

(560±16nm), red (650±16nm), red-edge (730±16nm), and near-infrared 

(840±26nm) bands. This drone also features a light sensor and RTK 

module for light correction in the image and precise georeferencing of 

the survey. The manufacturer claims a flight autonomy of 27 minutes 

and a maximum operational area per flight of 0.63 km². In a recent study 

in Germany (Ecke et al. 2024), this drone was used to acquire high-

resolution multispectral images of 235 different large-scale forest 

monitoring areas (ICP Level-I plots) distributed in Bavaria over a three-

year monitoring period (2020-2022). Despite the heterogeneous 

dataset acquired over time under various weather and lighting 

conditions, in forests with diverse compositions spread over a large 

study area, the article demonstrates how it was possible to classify five 

tree species, at the genus level, dead trees, and the health status of the 

main tree species into 14 different classes using the EfficientNet CNN 

architecture. The article highlights that this monitoring methodology 

can significantly reduce field acquisition costs and times, allowing for 

data standardization. 

Among the cameras that can be mounted on various types of drones, 

such as the DJI Matrice 300, Wingtra One Gen II, and senseFly eBeeX, 

the MicaSense RedEdge-MX stands out as one of the most efficient but 

also one of the most expensive. This camera captures images in the blue 

(475nm±20nm), green (560nm±20nm), red (668nm±10nm), red-edge 

(717nm±10nm), and near-infrared (840nm±40nm) bands, offering high 

spectral precision and consistency, making it ideal for analyzing forest 

vegetation. The camera is equipped with a light sensor and a reflectance 

panel for calibration, which must be captured at the drone's takeoff and 

landing. 

This camera was also tested in the GO-SURF project, where it was used 

to acquire images of various areas in the Tuscany region using the 

Wingtra One Gen II drone. Image processing through segmentation 

techniques based on the “Simple Linear Iterative Clustering (SLIC)” 



method (Achanta et al. 2012) allowed the identification of dead and 

declining plants by identifying stress thresholds. SLIC is an algorithm 

used for image segmentation, particularly for creating superpixels—

groups of contiguous pixels with similar characteristics, which simplify 

image analysis by reducing the number of elements to consider while 

maintaining most of the relevant information. Specifically, in the GO-

SURF project, multispectral images were processed using 

photogrammetric software Metashape Agisoft to generate an 

orthomosaic in different bands (blue, green, red, red-edge, near-

infrared). The images were imported into R-Cran software, using various 

processing packages to initialize the algorithm. During initialization, the 

algorithm uniformly distributes superpixel centers across the image. 

These centers are chosen to cover the entire image uniformly. Each pixel 

in the image is then assigned to the nearest superpixel center based on 

combined distance (space and color). The combined distance considers 

both spatial coordinates and color values (CIELAB space). The algorithm 

iterates until it segments the individual canopies. This algorithm can also 

be used through desktop software like SAGA GIS. Tests conducted in the 

GO-SURF project showed that forest environment segmentation works 

very well even using only the red-edge band, not multiple bands. This 

band seems most sensitive to identifying individual canopies or canopy 

portions with similar photosynthetic activity. The segmentation method 

reduces time compared to complex methods and accurately detects 

individual canopies or canopy portions with different photosynthetic 

activities, such as dead or declining canopy portions. However, to 

classify different decay classes (dead canopy portion, declining canopy 

portion, live canopy portion), vegetation indices need to be extracted 

from the polygons generated by SLIC, calibrating thresholds to identify 

dead plants. Thus, for each superpixel, thresholds are applied to 

vegetation indices to classify superpixels as representing healthy, 

stressed, or dead plants. The advantage of this method is that 

superpixel segmentation reduces the number of units to analyze, 

making the analysis faster and more efficient. Additionally, superpixels 

tend to follow the natural contours of plants, improving classification 

accuracy compared to single-pixel methods. 



 

Figure 1. Identification of Superpixels with White Contours, Detection 
of Declining Canopy in Yellow, and Dead Canopy Portions in Blue 

 

The use of SLIC Superpixels in drone imagery represents an advanced 

technique for identifying and monitoring dead plants. By segmenting 

images into homogeneous regions and applying thresholds on 

vegetation indices, it is possible to obtain an accurate map of 

problematic areas, allowing for timely and targeted interventions in 

crop management. 

 

Among other multispectral cameras on the market at a lower cost 

compared to those previously mentioned are the Parrot Sequoia, the 

Sentera Double 4K, the Mapir Survey3, and the Mapir Survey2. All these 

cameras, like the others, acquire multispectral information in the red, 

blue, green, and near-infrared bands, but not in the Red-Edge near-

infrared. This makes them less effective in calculating some of the 

indices previously mentioned. 



 

4. Conclusions 

It is impossible to have a complete overview of all the cameras available 

on the market at this time. However, based on our experience, it is 

essential to focus on those cameras that allow for the calculation of 

different vegetation indices, which can contribute to accurately 

mapping potential damage. This is because it is increasingly important 

to be able to intervene promptly. Despite some limitations, drones 

equipped with multispectral cameras represent a powerful and versatile 

tool for forest monitoring, as demonstrated by the GO-SURF project 

already implemented at the Italian level. It is anticipated that further 

technological developments and increasing accessibility to drones will 

make these tools increasingly fundamental in sustainable forest 

management. 
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